Locally Correctable and Testable Codes Approaching the Singleton Bound

نویسنده

  • Or Meir
چکیده

Locally-correctable codes (LCCs) and locally-testable codes (LTCs) are codes that admit local algorithms for decoding and testing respectively. The local algorithms are randomized algorithms that make only a small number of queries to their input. LCCs and LTCs are both interesting in their own right, and have important applications in complexity theory. It is a well-known question what are the best rate and distance that such LCCs and LTCs can achieve. When discussing LCCs and LTCs that use a constant number of queries (which is the most common setting), it is known that LCCs can not achieve a constant rate, and it is believed that the same is true for LTCs. However, it has recently been discovered that the situation is radically different when using n queries (β > 0): it turns out that there are both LCCs and LTCs that achieve any constant rate, while using n queries. In this work, we observe that in fact, LCCs and LTCs with n queries can, for any rate, approach the best possible relative distance. More specifically, recall that, by the Singleton bound, an error-correcting code of rate r can have relative distance of at most 1 − r. We construct LCCs and LTCs that, for every r > 0 and ε > 0, have rate r and relative distance 1−r−ε, where the alphabet size is a constant that depends on ε. By applying concatenation to those codes, we obtain binary LCCs and LTCs with n queries that achieve the Zyablov bound, which constitutes the best known parameters for (explicit) binary codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 2 A pr 2 01 5 High rate locally - correctable and locally - testable codes with sub - polynomial query complexity ∗

In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length n, constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and query complexity exp(Õ( √ logn...

متن کامل

Locally Testable and Locally Correctable Codes Approaching the Gilbert-Varshamov Bound

One of the most important open problems in the theory of error-correcting codes is to determine the tradeoff between the rate R and minimum distance δ of a binary code. The best known tradeoff is the Gilbert-Varshamov bound, and says that for every δ ∈ (0, 1/2), there are codes with minimum distance δ and rate R = RGV(δ) > 0 (for a certain simple function RGV(·)). In this paper we show that the...

متن کامل

High-rate Locally-testable Codes with Quasi-polylogarithmic Query Complexity

An error correcting code is said to be locally testable if there is a test that checks whether a given string is a codeword, or rather far from the code, by reading only a small number of symbols of the string. Locally testable codes (LTCs) are both interesting in their own right, and have important applications in complexity theory. A long line of research tries to determine the best tradeoff ...

متن کامل

On coset leader graphs of structured linear codes

We suggest a new approach to obtain bounds on locally correctable and some locally testable binary linear codes, by arguing that these codes (or their subcodes) have coset leader graphs with high discrete Ricci curvature. The bounds we obtain for locally correctable codes are worse than the best known bounds obtained using quantum information theory, but are better than those obtained using oth...

متن کامل

Towards Lower Bounds on Locally Testable Codes

1 Abbreviations and Notations 3 1 General Introduction 4 1.1 PCP theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Property Testing . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Locally Testable Codes . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Random locally testable codes . . . . . . . . . . . . . 6 1.3.2 Algebraic Construction of LTCs . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014